

FEATURES

- Standard 2.5mm x 2.0mm 4-Pad Surface Mount Package
- HCMOS Output
- Fundamental and 3rd Overtone Crystal Designs
- Frequency Range 1 110 MHz
- Frequency Stability ±50 ppm Standard, ±25 ppm and ±20 ppm Available
- Operating Voltages +1.8Vdc, +2.5Vdc or +3.3Vdc
- Operating Temperature to -40°C to +85°C
- Output Enable Standard
- Tape & Reel Packaging Standard, EIA-418
- RoHS/Green Compliant [6/6]

APPLICATIONS

Model 625 is ideal for applications; such as broadband access, Ethernet/Gigabit Ethernet, microprocessors/DSP/FPGA, networking equipment computers and peripherals, digital video, cameras and other portable devices.

1] Consult factory for 6I Stability/Temperature availability.

2] Frequency is recorded with three leading significant digits before the 'M' and 5 significant digits after the 'M' (including zeros). [Ex. 3.579545 MHz, code as 003M57954; 14.31818 MHz, code as 014M31818; 125 MHz, code as 125M00000]

Not all performance combinations and frequencies may be available. Contact your local CTS Representative or CTS Customer Service for availability.

PACKAGING INFORMATION [reference]

Device quantity is 1k pcs. minimum and 3k pcs. maximum per 180mm reel. 8mm tape width.

SHENZHEN YIJIN ELECTRONICS CO:LTD TEL: 0755--27876565+

	PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
	Maximum Supply Voltage	V _{CC}	-	-0.5	-	4.0	V
	Storage Temperature	T _{STG}	-	-40	-	+100	°C
	Frequency Range	f _o	-	1.0	-	110	MHz
	Frequency Stability	∆f/f _o	-	-	-	20, 25, 50	± ppm
	Aging	∆f/f _o	@+25°C, 1st year	-	-	3	± ppm
	Operating Temperature						
	Commercial	T₄	-	-10		+60	°C
	To do etcial			-20	+25	+70	_
	Industrial Supply Voltage			-40		+85	
	Model 625M			1.62	1.8	1.98	
	Model 625N	V _{CC}	$\pm 10\%$	2.25	2.5	2.75	V
	Model 625L			2.97	3.3	3.63	
	Supply Current		$C_L = 15 pF$				
	Model 625M		1.0 MHz to 50 MHz	-	-	7	
	[+1.8V]		50.1 MHz to 110 MHz	-	-	15	
S	Model 625N	1 _{CC}	1.0 MHz to 50 MHz	-	-	10	mA
ER	[+2.5V]		50.1 MHz to 110 MHz	-	-	15	
	Model 625L		1.0 MHz to 50 MHz	-	-	15	
A			50.1 MHz to 110 MHz	-	-	20	
AR	Output Load	Վ		-	-	15	р⊦
L L	Output voltage Levels	V	CMOS Load	90%\/			V
CA		V _{OH}		90 % V CC	-	-	v
R.	Logic U Level	VOL	CMOS LOAU	-	-	10%v _{CC}	
5		Teu	$V_{-1} = 90\% V_{-1} (1.8)(2.5, 2.3)()$			_7 _4 _8	
		TOH	$V_{OH} = 50.70V_{CC} (1.80, 2.5, 5.50)$			-2, -4, -0	mA
		L _{OL}	$V_{OL} = 10.90 V_{CC} (1.80, 2.5, 3.30)$	-	-	+2, +4, +8	0/-
	Ducput Ducy Cycle Dise and Fall Time	5111	@ 10% - 90% Levels C = 15pE			55	70
	Model 625M		1 0 MHz to 20 MHz			5	
	[+1.8V]		20 1 MHz to 110 MHz	_	-	4	
	Model 625N	T_R, T_F	1.0 MHz to 20 MHz	-	-	4	ns
	[+2.5V]		20.1 MHz to 110 MHz	-	-	3	
	Model 625L		1.0 MHz to 20 MHz	-	-	3	
	[+3.3V]		20.1 MHz to 110 MHz	-	-	2	
	Start Up Time	T _S	Application of V _{CC}	-	2	5	ms
	Enable Function						
	Enable Input Voltage	V _{IH}	Pin 1 Logic '1', Output Enabled	0.7*V _{CC}	-	-	V
	Disable Input Voltage	V _{IL}	Pin 1 Logic '0', Output Disabled	-	-	0.3*V _{CC}	v
	Enable Time [M,N,L]	T _{PLZ}	Pin 1 Logic '1'	-	-	5	ms
	Standby Current	I _{ST}	Pin 1 Logic '0', Output Disabled	-	-	15	μA
	Period Jitter, pk-pk	pjpk-pk		-	-	40	
	Period Jitter, RMS	pjrms		-	-	25	ps
	Phase Jitter, RMS	tjrms	Bandwidth 12 kHz - 20 MHz	-	-	1	

Notes:

1. Inclusive of initial tolerance at time of shipment, changes in supply voltage, load, temperature and aging.

LVCMOS OUTPUT WAVEFORM

ENABLE TRUTH TABLE

PIN 1	PIN 3
Logic `1'	Output
Open	Output
Logic `0'	High Imp.

MODEL 625 2.5MM X 2.0MM LOW COST HCMOS CLOCK OSCILLATOR

MECHANICAL SPECIFICATIONS

MARKING INFORMATION

- 1. XX.XX Frequency in MHz.
- 2. C CTS and Pin 1 identifier.
- 3. ** Manufacturing Site Code.
- 4. D Manufacturing Date Code. [See Table 1 for codes.]
- Complete CTS part number, frequency value and date code information must appear on reel and carton labels.

NOTES

- 1. Termination pads [e4]. Barrier-plating is nickel [Ni] with gold [Au] flash plate.
- 2. Reflow conditions per JEDEC J-STD-020; 260°C maximum, 20 seconds.
- 3. MSL = 1.

TABLE I	TABLE I															
\backslash	MONTH				EED	MAD		MAY				SED.	00T	NOV	DEC	
	YEAR				JAN	FED	IVIAR	APK	IVIAT	JON	JOL	AUG	JEP	001	NOV	DEC
2001	2005	2009	2013	2017	Α	В	С	D	E	F	G	Н	J	К	L	М
2002	2006	2010	2014	2018	Ν	Р	Q	R	S	Т	U	V	W	Х	Y	Z
2003	2007	2011	2015	2019	а	b	с	d	е	f	g	h	j	k	I	m
2004	2008	2012	2016	2020	n	р	q	r	s	t	u	v	w	x	у	z

SUGGESTED SOLDER PAD GEOMETRY

 C_{BYPASS} should be ≥ 0.01 uF.

D.U.T. PIN ASSIGNMENTS

PIN	SYMBOL	DESCRIPTION
1	EOH	Enable
2	GND	Circuit & Package Ground
3	Output	RF Output
4	V _{CC}	Supply Voltage

SHENZHEN YIJIN ELECTRONICS CO:LTD TEL: 0755--27876565+

·18924600166 QQ: 857950243 http://www.yijindz.com/+